

3DST Group Meeting 3DST & TPC: First Look at a Sign Selected CC Inclusive Event Selection

Clark McGrew Stony Brook Univ.

- ➤ The full spill simulation
 - → ECal simulation is approximate, but not used
 - → Both RHC and FHC studied
 - Simulation done on 21/02/25 (RHC)
- > 3DST and TPC track matching
- Very simple sign selected CC inclusive selection

The Full Spill Simulation

- Use the full chain
 - → GENIE:
 - > FHC and RHC beam with 7.5×10¹³ POT per spill
 - 3.15×10¹⁷ POT simulated (4200 spills for each flavor)
 - Includes 250 m of rock upstream of hall
 - → EDepSim:
 - > Track all particles, but only save trajectories hitting sensitve detectors
 - → sand-stt:
 - > Simulate ecal response for each individual interaction
 - → ERepSim:
 - > Overlay interactions (e.g ~3500 per RHC spill).
 - > Simulate 3DST and TPC
 - Overlay edep-sim results and simulate electronics response
 - > Use sand-stt for ECal
 - Uses 400 ns integration, and does not include dead time and event overlap.
 - For each channel, sort hits by time, and combine hits within the targeted integration window (either 400ns or 30 ns).
 - → CubeRecon
 - > Already built to handle full spill, so just run it.

Cheats and Approximations

- Particle Identification
 - → 3DST electron identification: based on particle type
 - Justified by T2K P0D electron id (>99%)
 - → 3DST proton identification based on particle type (p < 900 MeV/c)
 - Justified by CERN SFGD beam test (clear dE/dX separation)
 - → TPC electron identification based on particle type
 - > Justified by T2K TPC performance
 - \rightarrow TPC proton identification based on particle type (p < 1.1 GeV/c)
 - > Justified by T2K TPC performance
- Sign selection
 - → TPC based on particle charge
 - > Justified by T2K TPC performance and CERN beam test
 - → 3DST based on measured curvature (no cheating)
- > MIP Momentum
 - → Based on particle momentum
 - > TPC is justified by CERN beam test performance
 - > 3DST is justified based on T2K range vs momentum performance

Reconstructed Full Spill Event

More Typical Full Spill Events

More Typical Full Spill Events

CC Inclusive Selection

- Select interaction candidates using a 50 ns time window
- \triangleright Veto when there is activity in first 4 upstream 3DST layers (± 50 ns)
- Interactions exiting the 3DST (activity in outer 4 layers of 3DST)
 - \rightarrow Do not consider TPC electrons and protons (p < 1.1 GeV/c)
 - → Do not consider 3DST electrons and protons (p < 900 MeV/c)
 - → Match 3DST & TPC tracks (connect within 15 mm & 45°)
 - → For correct sign TPC tracks (neutrino—negative, antineutrino—positive)
 - Select highest momentum track
 - → Selected track must start inside the 3DST fiducial volume
- Interactions fully contained in the 3DST (no activity in outer 4 layers)
 - → Do not consider 3DST electrons and protons (p < 900 MeV/c)
 - → Select longest correct sign track
 - > Reject short tracks (Length < 30 cm)
 - → Selected track must start inside the 3DST fiducial volume
- Assuming **no muon/pion** separation background is largely from pions
 - → We can expect some pion rejection using the ECal
 - Affected by track overlaps, so this requires more study
 - → Expect muon/pion separation in 3DST based on track topology (not used)

3DST and TPC track matching

Intersection distance for all 3DST and TPC tracks

3DST Sign Selection

- > Track sign calculated based
 - → Direction sense from timing
 - → Fitted direction at front and back
 - → Length from track fit
 - Require length greater than 30 cm

Curvature for muons (both types)

Curvature for positive particles

Curvature for negative particles

FHC μ Selection

True muon momentum of contained interactions

FHC efficiency to correctly select μ

Efficiency vs True Muon Momentum

FHC μ Purity

Purity vs True Muon Momentum

RHC μ⁺ Selection

True muon momentum of contained interactions

RHC efficiency to correctly select μ^+

Efficiency vs True Muon Momentum

RHC μ^+ Purity

Purity vs True Muon Momentum

RHC efficiency to correctly select µ

Efficiency vs True Muon Momentum

RHC μ⁻ Purity

Purity vs True Muon Momentum

Summary and Conclusion

- A very simple selection for inclusive charged current interactions
 - → The only significant cheat is PID, but its performance is based on existing detectors (T2K and CERN beam tests of the proposed TPC and superFGD)
 - → Caveat: Momentum binning is large enough that resolution should be an insignificant effect, but resolution is *not* included.
- This is a **lower bound** for the expected efficiency and purity
 - → It's a baseline of comparison for more sophisticated analyses
 - → Dominated by single-pion, multi-pion, and DIS interactions
 - \rightarrow Efficiency to correctly select the μ^- in the FHC (neutrino) beam
 - > Typical efficiency is 80%, but drops for muons below 750 MeV/c
 - > Typical purity is 90%
 - \rightarrow Efficiency to correctly select the μ + in the RHC (antineutrino) beam
 - > Typical efficiency is 80%, but drops below 750 MeV/c
 - Typical purity is 70%
 - → For RHC μ^- (very limited sample)
 - > Typical efficiency is 80% (above 1GeV)
 - > Typical purity is 80% (above 1.5 GeV)
- Future directions: Quantify background sources
 - → First look: Background interactions are mostly "correctly" selected by pion tracks with minimal external background (i.e. the muon is not the most energetic particle)

Backup Slides